Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations
نویسندگان
چکیده
This paper considers a multigrid algorithm suitable for efficient solution of indefinite linear systems arising from finite element discretization of time harmonic Maxwell equations. In particular, a “backslash” multigrid cycle is proven to converge at rates independent of refinement level if certain indefinite block smoothers are used. The method of analysis involves comparing the multigrid error reduction operator with that of a related positive definite multigrid operator. This idea has previously been used in multigrid analysis of indefinite second order elliptic problems. However, the Maxwell application involves a non-elliptic indefinite operator. With the help of a few new estimates, the earlier ideas can still be applied. Some numerical experiments with lowest order Nedelec elements are also reported.
منابع مشابه
An Adaptive Multilevel Method for Time-Harmonic Maxwell Equations with Singularities
We develop an adaptive edge finite element method based on reliable and efficient residual-based a posteriori error estimates for low-frequency time-harmonic Maxwell’s equations with singularities. The resulting discrete problem is solved by the multigrid preconditioned minimum residual iteration algorithm. We demonstrate the efficiency and robustness of the proposed method by extensive numeric...
متن کاملParallel Numerical Solution of the Time-Harmonic Maxwell Equations
We develop a fully scalable parallel implementation of an iterative solver for the time-harmonic Maxwell equations with vanishing wave numbers. We use a mixed finite element discretization on tetrahedral meshes, based on the lowest order Nédélec finite element pair of the first kind. We apply the block diagonal preconditioning approach of Greif and Schötzau (Numer. Linear Algebra Appl. 2007; 14...
متن کاملParallel Multigrid 3d Maxwell Solvers 1
3D magnetic eld problems are challenging not only because of interesting applications in the industry but also from the mathematical point of view. In the magne-tostatic case, our Maxwell solver is based on a regularized mixed variational formulation of the Maxwell equations in H 0 (curl) H 1 0 (() and their discretization by the N ed elec and Lagrange nite elements. Eliminating the Lagrange mu...
متن کاملResolution of the time-harmonic Maxwell equations using discontinuous Galerkin methods and domain decomposition algorithms
We present numerical results relative to the resolution of the time-harmonic Maxwell equations discretized by discontinuous Galerkin methods. First, a numerical study of the convergence of discontinuous Galerkin methods which compares different strategies proposed in the literature for the elliptic Maxwell equations, is performed in the two-dimensional case. We also introduce a Schwarz-type dom...
متن کاملInverse medium scattering for three-dimensional time harmonic Maxwell equations
A continuation method is developed for solving the inverse medium scattering problem of time harmonic Maxwell equations in R3. By using multifrequency scattering data, our reconstruction algorithm first employs the Born approximation for an initial guess and proceeds via recursive linearization on the wavenumber k. At each linearization step, one forward and one adjoint state of the Maxwell equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2004